Oxovanadium(V)-meso-tetraphenylporphine

MARTIN HOCH, DIETER REHDER* and CAROLA WEIDEMANN

Institut für Anorganische Chemie der Universität, Martin-Luther-King-Platz 6, D 2-Hamburg 13, F.R.G.

Received November 22, 1983

Vanadium, embedded in porphine systems, is an integral part of many fossils such as crude oil [1]. The vanadium porphines, which contain the VO^{2+} ion, are thought to be secondary products formed during fossilization from unspecified vanadium compounds and metal porphines (*via* transmetallation) or their precursors.

The biological role of vanadium in living plant and animal tissues has only very recently been fully recognized (see [2] to [5] for reviews). An as yet unspecified complex vanadium compound containing the main part of the vanadium in the oxidation state +III has been identified in so-called vanadocytes in the circulatory system of several tunicates [3, 6] and might have the function of storage of redox equivalents. The inhibitory effect of vanadate(V)towards nucleases, phosphatases and ATPases is now well established; the inhibition of ATPase ceases as vanadate(V) is reduced physiologically to oxovanadium(IV). There appears to be evidence that the vanadyl ion is then bound to hemoglobin [7]. The essential role of vanadium in the photosynthetic apparatus has also been demonstrated [8].

The paramagnetic VO^{2^+} porphines have been extensively studied by ESR spectroscopy [9]. The prospect of obtaining complementary ⁵¹V NMR information on diamagnetic VO^{3^+} species prompted us to attempt the preparation of oxovanadium(V) porphines. In order to establish a chart of vanadium chemical shifts, $\delta(^{51}V)$, which can be employed as a diagnostic tool for structure assignments, we also present as yet unpublished ⁵¹V NMR data on vanadium(V) compounds containing vanadium-nitrogen bonds, together with comparative data on selected compounds from the literature (Table I).

There are only a few reports on vanadium(V)– nitrogen systems related to our present study. These include VOCl₂(NR₂)NHR₂ [18], VO(OiPr)_{3-n}-(NEt₂)_n [19] and VOCl₃(NEt₃)₂ [20], and a somewhat dubious ⁵¹V NMR investigation of reaction products obtained from, *e.g.* VOCl₃ and diethylamine in acetonitrile [21]. It has been noted that the VO³⁺

Fig. 1. Possible structure of $[(TPPH_2)^{2^+}(VOCl_3^-)_2]$ (1), based on analytical and spectroscopic (UV, IR, ⁵¹V NMR) characteristics. For the $\{VOCl_3NR_2^-\}$ moiety, tetragonal geometry as in $[VOCl_4]^-$ [24] and $[VOBr_4]^-$ [25] is presumed.

ion is too small to coordinate to the porphine frame in the manner commonly observed with transition metal ions (including VO^{2+}) [22]; other coordination modes should be possible, though.

We have now successfully prepared an oxovanadium(V) porphine from VOCl₃ and meso-tetraphenylporphine (H₂TPP) which, to our knowledge is the first diamagnetic vanadium porphine. A structure based on analytical and spectroscopic data is shown in Fig. 1. The complex may be considered an internal salt containing the [VOCl₃(NR₂)]⁻ moiety and the diprotonated tetraphenylporphine cation, hence [(TPPH₂)²⁺(VOCl₃⁻)₂] (1).

In a typical experiment, 370 mg VOCl₃ (2.14 mmol) dissolved in 40 ml O2-free, absolute CCl4 were added dropwise over 2 h to a stirred solution of 1.0 g (1.62 mmol) H₂TPP in 200 ml CCl₄ kept under N_2 . The formerly dark-red solution turned to a deep green and gradually, a green powder precipitated. The mixture was stirred at room temperature for an additional 10 h, while a weak N₂ stream was passed through the solution. The precipitate was filtered off (N₂ atmosphere) and washed with CCl₄ to remove unreacted H₂TPP until the filtrate was colourless. The residue was then dried for five hours under high vacuum to yield 730 mg (70% relative to VOCl₃) of an emerald green, powdery product, which was stored under N_2 . Analysis: $C_{44}H_{30}Cl_6N_4O_2V_2$ (M = 961.4) calcd. C, 54.97; H, 3.15; Cl, 22.12; N, 5.83; V, 10.60. Found C, 55.3; H, 3.45; Cl, 20.9; N, 6.00; V, 10.0%.

In iPrOH, the complex degrades to form VO(Oi-Pr)₃ and $[H_4TPP]^{2^+}$. This alcoholysis is quite generally observed with V-NR₂ and V-Cl bonds. In CH₃CN, VO(NR₂)₃ is obtained. With water/acetone, H₂TPP is recovered and an acidic solution (pH *ca.* 2) containing the VO₂⁺ ion is formed. All these reactions are indicated by the ⁵¹V NMR spectra (Table I). Stable, dark-green solutions are obtained with CHCl₃, and these were used for spectroscopic investigations.

^{*}Author to whom correspondence should be addressed.

System ^a	Medium	Assignment ^c	$\delta(^{51}V)^{\mathbf{b}}$ (ppm)	Ref.
VOCl ₃ /H ₂ TPP	CHCl ₃	$[(TPPH_2)^{2+}(VOCl_3)_2]$	-481	d
	CH ₃ CN	VO(NR ₂) ₃	-370	d
	iPrOH	VO(OiPr) ₃	-629	d
	H ₂ O/acetone	$[VO_2]^+$	-540	d
$VOCl_{3-n}(OR)_n^e/H_2TPP$	CHCl3		-481	d
VOF ₃ /H ₂ TPP	CHCl3	$[(TPPH_2)^{2+}(VOF_3)_2]$	-626	d
VOCl ₃ /H ₂ OEP	CHCl3	$[(OEPH_2)^{2+}(VOCl_3)_2]$	-497	d
	CH ₃ CN	$VO(NR_2)_3$	-377	d
[pyH][VOCl ₄]	CH ₂ Cl ₂		-319	d
$[VO_2Cl_2]^-$	CH ₃ CN		-301	10
VO(NEt ₂) ₃	CH ₃ CN		365	11
VOCl ₃ /NH ₂ Ph	DMF, KClO3 ^h	VO(NHPh) ₃	-364	d
VOCl ₃ /2-NH ₂ py	DMF	VO(NHpy) ₃	-361	d
	THF, KClO ₃ ^h	VO(NHpy) ₃	-372	d
	THF, iPrOH	VO(NHpy)3, VO(OiPr)3	-361, -623	d
VOCl ₂ (NEt ₂)	neat		-212	14
$[VO_2]^*$	$H_2O, pH = 2$		-541	12
VO(OiPr) ₃	Et ₂ O		-625	13
VO(OiPr) ₂ NEt ₂	neat		$-593 (t, 105)^{f}$	14
VO(OiPr)(NEt) ₂	neat		-462	14
[VOF ₄]	CH ₃ CN	$[VOF_4(CH_3CN)]^-$	-778	15
VOF ₃	CHCl ₃		-582	d
$[VO_2F_4]^{3-}$	H ₂ O		-775 (q, 117) ^g	16

TABLE I. ⁵¹V Chemical Shifts of Vanadyl Porphines and Related Compounds.

^aAbbreviations: H₂TPP = meso-tetraphenylporphine, H₂OEP = octacthylporphine, py = pyridine. ^bAt 23.66 MHz (Bruker WH 90) and 300 ± 2 K relative to VOCl₃ neat. ^cSome of the assignments are tentative. ^dThis work. ^en = 1, R = nBu; n = 2, R = iPr. ^fI:1:1 triplet due to ¹J(⁵¹V-¹⁴N) coupling. A similar coupling (J = 95 Hz) has formerly been reported for (Me₃-SiO)₃V=NtBu [17]. ^gBinominal quintet due to ¹J(⁵¹V-¹⁹F) coupling. ^hAddition of KClO₃ was necessary to prevent reduction to VO²⁺.

Spectroscopic characteristics which, apart from the analytical data, lead to the formulation depicted in Fig. 1, are the following: The UV spectrum [354.2 $(\epsilon = 0.27), ca. 420$ (shoulder), 444.7 (1.0), 608.6 (0.10), 660.5 (0.54) nm] is practically identical to that of $[H_4TPP]^{2+}$ [356.5 ($\epsilon = 0.076$), ca. 422 (shoulder), 444.2 (1.0), 606 (weak), 659.6 (0.13) nm]. This is also true for the IR spectrum; the only band in addition to the pattern exhibited by $[H_4TPP]^{2+}$ is a medium absorption at 908 cm⁻¹ (KBr) which we attribute to the ν (VO). For $[VOCl_4]^-$, the VO stretch lies at 967 ± 3 [23, 24], for [VOBr₄]⁻ at 922 cm⁻¹ [25]. Further, there are weak bands at 446, 430 and 322 cm^{-1} (CsI), which may correspond with $\nu(VCl)$, $\nu(VN)$ and deformation modes. The ⁵¹V NMR shows a comparatively sharp signal (width at half-height 45 \pm 20 Hz) at -481 \pm 2 ppm (relative to VOCl₃). This shift value is in accord with the assumption that one chloro ligand in $[VOCl_4]^-$ ($\delta = -319$ ppm) is replaced by an amido group of the tetraphenylporphine ligand. Replacement of the first Cl in VOCl₃ by NR₂ increases the shielding of the ⁵¹V nucleus by 212 ppm [14]. In VOCl₂(NEt₂), the amido ligand accounts for one fourth of the ligand-induced shielding; in a complex ion [VOCl₃(NEt₂)]⁻, the contribution of NEt₂ to $\delta(^{51}V)$ should only be one fifth of the total shielding, or 80% of -212, *i.e.* - 170 ppm. Adding this value to -319 gives -489 ppm, which is satisfactorily close to the observed $\delta(^{51}V) = -481$ ppm for the two {VOCl₃N₃⁻ moieties in *I*.

We have also investigated the reactions between H_2TPP and $VOCl_2(OnBu)$, $VOCl(OiPr)_2$, $VO(OiPr)_3$ and VOF_3 , respectively. The tris(ester) did not react. The mixed ester—chlorides reacted to give green compounds with the same spectroscopic characteristics as *1*, including the $\delta(^{51}V)$ values (*cf.* Table I), but substantially lower vanadium contents (6.5%). Vanadyltrifluoride gave an only fairly stable green compound with UV and IR spectra practically identical to those of *1*. However, the vanadium nucleus is more shielded ($\delta = -626$ ppm) than in 1 and typical for a $\{VOF_3(NR_2)\}^-$ moiety (replacing F by NR₂ deshields the ⁵¹V nucleus). Finally, the reaction between VOCl₃ and octaethylporphine yielded a dark-purple product. IR and UV spectra are those of the protonated porphine. $\delta(^{51}V)$ of the red CHCl₃ solution is -497 ppm; hence, a complex analogous to *I* is probably formed.

References

- E. W. Baker and S. E. Palmer, in D. Dolphin (Ed.), 'The Porphyrins I'. Academic Press, New York, 1978. p. 485.
- 2 N. D. Chasteen, 'Structure and Bonding', vol. 53, Springer Verlag, Berlin 1983, p. 105.
- 3 K. Kustin, G. C. McLeod, T. R. Gilbert and Le Baron R. Briggs, 4th, 'Structure and Bonding', Vol. 53, Springer Verlag, Berlin 1983, p. 139;
 K. Kustin and I. G. Macara, Comments Inorg. Chem., 2, 1

(1982).

- 4 O. Hansen, Acta Pharmacol. Toxicol., 52, supplem. 1, 3 (1983).
- 5 H.-U. Meisch and H.-J. Bielig, Basic Res. Cardiol., 75, 413 (1980).
- 6 A. L. Dingley, K. Kustin, I. G. Macara, L. McLeod and M. F. Roberts, *Biochim. Biophys. Acta*, 720, 384 (1982); M. V. Bell, B. J. S. Pierie, D. B. McPhail, B. A. Goodman, I. B. Falk-Petersen and J. R. Sargent, *J. Mar. Biol. Assoc.* U.K., 62, 709 (1982).
- 7 L. C. Cantley, Jr., and P. Aisen, J. Biol. Chem., 254, 1781 (1979);

I. G. Macara, K. Kustin and L. C. Cantley, Jr., *Biochim. Biophys. Acta*, 629, 95 (1980).

- 8 L. Becker and H. U. Meisch, in 'Photosynthesis II., G. Akoyunoglou (Ed.), Balaban Int. Science Services, Philadelphia 1981, p. 123.
- 9 N. D. Chasteen, in 'Biological Magnetic Resonance', L. Berliner and J. Reuben (Eds.), vol. 3, Plenum Press, New York 1981, p. 53.
- 10 S. E. O'Donnell and M. T. Pope, J. Chem. Soc. Dalton Trans., 2290 (1976).
- 11 D. Rehder, Z. Naturforsch., 32b, 771 (1977).
- 12 L. P. Kasanskii and V. I. Spitsyn, Dokl. Phys. Chem., 223, 721 (1975);
- E. Heath and O. W. Howarth, J. Chem. Soc. Dalton Trans., 1105 (1981).
- 13 D. Rehder, Bull. Magn. Reson., 4, 33 (1982).
- 14 W. Priebsch and D. Rehder, unpublished work.
- 15 Yu. A. Buslaev, V. D. Kopanev, A. A. Konovalova, S. V. Bainova and V. P. Tarasov, Dokl. Chem., 243, 583 (1978).
- 16 R. J. Gillespie and U. R. K. Rao, J. Chem. Soc. Chem. Commun., 422 (1983).
- 17 W. A. Nugent and R. L. Harlow, J. Chem. Soc. Chem. Commun., 342 (1979).
- 18 S. Prasad and K. N. Upadhaya, J. Proc. Inst. Chemists (India), 32, 270 (1960).
- 19 R. Choukroun and D. Gervais, *Inorg. Chim. Acta*, 27, 163 (1978).
- 20 H. Funk, W. Weiss and M. Zeising, Z. Anorg. Allgem. Chem., 296, 36 (1958).
- A. A. Konovalova, S. V. Bainova, V. D. Kopanev and Yu.
 A. Buslaev, *Koord. Khim.*, 8, 1211 and 1364 (1982).
- 22 J. W. Buchler, in D. Dolphin (Ed.), 'The Porphyrins I', Academic Press, New York, 1978, p. 435.
- 23 D. Nicholls and D. N. Wilkinson, J. Chem. Soc. A, 1103 (1970).
- 24 G. Beindorf, J. Strähle, W. Liebelt and K. Dehnicke, Z. Naturforsch., 35b, 522 (1980).
- 25 U. Müller, A. F. Shihada and K. Dehnicke, Z. Naturforsch., 37b, 699 (1982).