Oxovanadium(V)-meso-tetraphenylporphine

MAKIIN H

Luther-King-PI&z 6, D Z-Hamburg 13, F.R.G.

Received November 22, 1983

Vanadium, embedded in porphine systems, is an vanadium, embedded in porprine systems, is an integral part of many fossils such as crude oil $[1]$. The vanadium porphines, which contain the $\text{VO}^{\text{2+}}$ ion, are thought to be secondary products formed during fossilization from unspecified vanadium compounds and metal porphines (via transmetallation) or their precursors. T_{F} relations.

and a nonly very recently and the postand animal tissues has only very recently been fully recognized (see $\lceil 2 \rceil$ to $\lceil 5 \rceil$ for reviews). An as yet unspecified complex vanadium compound containing the main part of the vanadium in the oxidation state +III has been identified in so-called vanadocytes in the circulatory system of several tunicates $[3, 6]$ and might have the function of storage of redox equivalents. The inhibitory effect of vanadate (V) towards nucleases, phosphatases and ATPases is now well established; the inhibition of ATPase ceases as vanadate(V) is reduced physiologically to oxovana $dium (IV)$. There appears to be evidence that the vanadyl ion is then bound to hemoglobin $[7]$. The essential role of vanadium in the photosynthetic apparatus has also been demonstrated $[8]$.

The paramagnetic VO^{2+} porphines have been extensively studied by ESR spectroscopy [9]. The prospect of obtaining complementary ⁵¹V NMR information on diamagnetic VO^{3+} species prompted us to attempt the preparation of oxovanadium (V) porphines. In order to establish a chart of vanaalum chemical shifts, $o(-v)$, which can be employed as a diagnostic tool for structure assignments, we also present as yet unpublished ⁵¹V NMR data on $vanadium(V)$ compounds containing vanadium-nitrogen bonds, together with comparative data on selected compounds from the literature (Table I).

There are only a few reports on vanadium (V) nitrogen systems related to our present study. These
include $VOCl_2(NR_2)NHR_2$ [18], $VO(OiPr)_{3-n}$ INCIUDE VOCI₂(NR₂)NFIR₂ [10], VO(OIPI)_{3-n}- $(NEL_2)_n$ [19] and $VOL_3(NEL_3)_2$ [20], and a somewhat quoious ^{or} v NMR investigation of reactio products obtained from, e.g. VOCl₃ and diethylamine
in acetonitrile [21]. It has been noted that the VO³⁺

 \mathbf{z}^* Fig. 1. Possible structure of $[(1PPH_2)$ (VOCl_{3,} $]_2$) (I) based on analytical and spectroscopic $(UV, IR, -V)$ MML characteristics. For the $\{VOCl_3NR_2\}$ moiety, tetragonal geometry as in $[VOCl_4]^{\sim}$ $[24]$ and $[VOBr_4]^{\sim}$ $[25]$ is presumed.

ion is too small to coordinate to the porphine frame ion is too small to coordinate to the porphine fram in the manner commonly observed with transition metal ions (including VO^{2+}) [22]; other coordination modes should be possible, though.

We have now successfully prepared an oxovana- $\dim(V)$ porphine from $VOCl₃$ and meso-tetraphenylporphine $(H₂ TPP)$ which, to our knowledge is the first diamagnetic vanadium porphine. A structure based on analytical and spectroscopic data is shown in Fig. 1. The complex may be considered an internal salt containing the $[VOCl₃(NR₂)]$ moiety and the diprotonated tetraphenylporphine cation, hence $[(TPPH₂)²⁺(VOCl₃⁻)₂]$ (1).

In a typical experiment, 370 mg $VOCl₃$ (2.14 mmol) dissolved in 40 ml O_2 -free, absolute CCl₄ were added dropwise over 2 h to a stirred solution of 1.0 g (1.62 mmol) H_2 TPP in 200 ml CCl₄ kept under N_2 . The formerly dark-red solution turned to a deep green and gradually, a green powder precipitated. The mixture was stirred at room temperature for an additional 10 h, while a weak N_2 stream was passed through the solution. The precipitate was filtered off $(N_2$ atmosphere) and washed with CCl₄ to remove unreacted H_2 TPP until the filtrate was colourless. The residue was then dried for five hours under high vacuum to yield 730 mg (70% relative to $VOCl₃$) of an emerald green, powdery product, which was stored under N_2 . Analysis. $C_{44}H_{30}Cl_6N_4O_2V_2$ (M = 901.4) calcu. C, 54.97; H, 3.15; Cl, 22.12; N, 5.83; V, 10.60. Found C, 55.3; H , 3.45; Cl, 20.9; N, 6.00; V, 10.0%.

In iPrOH, the complex degrades to form $VO(Oi-)$. \Pr ₃ and $\left[\text{H}_{4} \text{TPP}\right]^{2+}$. This alcoholysis is quite generally observed with $V-NR_2$ and $V-C1$ bonds. In CH_3CN , $VO(NR_2)_3$ is obtained. With water/acetone, H_2 TPP is recovered and an acidic solution (pH ca . 2) containing the v_2 ion is formed. All these $\frac{1}{\sqrt{1-\frac{1$ (Table I). Stable, dark-green solutions are obtained with $CHCl₃$, and these were used for spectroscopic investigations.

^{*}Author to whom correspondence should be addressed.

System ^a	Medium	Assignment ^c	$\delta({}^{51}V)^b$ (ppm)	Ref.
VOCl ₃ /H ₂ TPP	CHCl ₃	$[(TPPH2)2+(VOCI3]2]$	-481	d
	CH ₃ CN	$VO(NR_2)_3$	-370	d
	iPrOH	$VO(OiPr)_3$	-629	d
	H ₂ O/acetone	$[VO_2]^+$	-540	d
$VOCl_{3-n}(OR)_n^e/H_2$ TPP	CHC ₁		-481	d
VOF ₃ /H ₂ TPP	CHCl ₃	$[(TPPH2)2+(VOF3-)2]$	-626	d
VOCl ₃ /H ₂ OEP	CHCl ₃	$[(OEPH2)2+(VOC]3]2]$	-497	d
	CH ₃ CN	VO(NR ₂) ₃	-377	d
$[pyH]$ $[VOCl4]$ ⁻	CH ₂ Cl ₂		-319	d
$[VO_2Cl_2]$	CH ₃ CN		-301	10
VO(NEt ₂) ₃	CH ₃ CN		-365	11
VOCl ₃ /NH ₂ Ph	DMF, $KClO3$ ^h	$VO(NHPh)_3$	-364	d
$VOCl3/2-NH2py$	DMF	$VO(NHpy)_3$	-361	d
	THF, $KClO3$ ^h	$VO(NHpy)_3$	-372	d
	THF, iPrOH	$VO(NHpy)_3$, $VO(OiPr)_3$	$-361, -623$	d
VOCl ₂ (NEt ₂)	neat		-212	14
$[VO2]$ ⁺	$H_2O, pH = 2$		-541	12
$VO(OiPr)_3$	Et ₂ O		-625	13
$VO(OiPr)_2NEt_2$	neat		-593 (t, 105) ^f	14
VO(OiPr)(NEt) ₂	neat		-462	14
$[VOF4]-$	CH ₃ CN	$[VOF4(CH3CN)]-$	-778	15
VOF ₃	CHCl ₃		-582	d
$[VO_2F_4]^{3-}$	H_2O		-775 (q, 117) ^g	16

TABLE L⁵¹V Chemical Shifts of Vanadyl Porphines and Related Compounds.

^bAt 23.66 MHz (Bruker ^aAbbreviations: H₂TPP = meso-tetraphenylporphine, H₂OEP = octacthylporphine, py = pyridine. WH 90) and 300 ± 2 K relative to VOCl₃ neat. Some of the assignments are tentative. This work. $e_n = 1$, R = iPr. f_1 :1:1 triplet due to ¹J(⁵¹V₋¹⁴N) coupling. A similar coupling (J = 95 Hz) has formerly been re tion to VO^{2+} .

Spectroscopic characteristics which, apart from the analytical data, lead to the formulation depicted in Fig. 1, are the following: The UV spectrum [354.2] $(\epsilon = 0.27)$, ca. 420 (shoulder), 444.7 (1.0), 608.6 (0.10) , 660.5 (0.54) nm is practically identical to that of $[H_4 TPP]^{2+}$ [356.5 ($\epsilon = 0.076$), ca. 422 (shoulder), 444.2 (1.0), 606 (weak), 659.6 (0.13) nm]. This is also true for the IR spectrum; the only band in addition to the pattern exhibited by $[H_4 TPP]^{2+}$ is a medium absorption at 908 cm⁻¹ (KBr) which we attribute to the $\nu(VO)$. For $[VOCl₄]⁻$, the VO stretch lies at 967 ± 3 [23, 24], for [VOBr₄]⁻ at 922 cm⁻¹ [25]. Further, there are weak bands at 446, 430 and 322 cm^{-1} (CsI), which may correspond with $\nu(VCl)$, $\nu(VN)$ and deformation modes. The ⁵¹V NMR shows a comparatively sharp signal (width at half-height 45 \pm 20 Hz) at -481 \pm 2 ppm (relative to VOCl₃). This shift value is in accord with the assumption that one chloro ligand in [VOCl₄]^{$-$} (δ = -319 ppm) is replaced by an amido group of the tetraphenylporphine ligand. Replacement of the first Cl in VOCl₃ by NR₂ increases the shielding of the $51V$ nucleus by 212 ppm [14]. In $VOCl₂(NEt₂)$, the amido ligand accounts for one fourth of the ligand-induced shielding; in a complex ion $[VOCl₃(NEt₂)]$, the contribution of $NEt₂$ to $\delta({}^{51}V)$ should only be one fifth of the total shielding, or 80% of -212 , i.e. -170 ppm. Adding this value to -319 gives -489 ppm, which is satisfactorily close to the observed $\delta(^{51}V) = -481$ ppm for the two $\{VOCl_3N_1'\}^-$ moieties in 1.

We have also investigated the reactions between H_2 TPP and VOCl₂(OnBu), VOCl(OiPr)₂, VO(OiPr)₃ and VOF₃, respectively. The tris(ester) did not react. The mixed ester-chlorides reacted to give green compounds with the same spectroscopic characteristics
as I , including the δ (⁵¹V) values (*cf.* Table I), but substantially lower vanadium contents (6.5%). Vanadyltrifluoride gave an only fairly stable green compound with UV and IR spectra practically identical to those of I . However, the vanadium nucleus is more shielded (δ = -626 ppm) than in 1 and typical for

a $\{VOF_3(NR_2)\}^-$ moiety (replacing F by NR₂ deshields the 5'V nucleus). Finally, the reaction between VOC1 and octaethylporphine yielded and a between VOCl₃ and octaethylporphine yielded a
dark-purple product. IR and UV spectra are those of the protonated porphine. $\delta(^{51}V)$ of the red CHCl₃ solution is -497 ppm; hence, a complex analogous to I is probably formed.

References

- E. W. Baker and S. E. Palmer, in D. Dolphin (Ed.), 'The P , w. baker and S. E. Faimer, in D. Dolphin (Ed.), The Porphyrins I'. Academic Press, New York, 1978. p. 485. N. D. Chasteen, 'Structure and Bonding', vol. 53,
- $S₁$, $D₂$, Chasteen, Berlin 1983, p. 105. Spinger verlag, Berlin 1909, p. 109.
- R. Rustin, G. C. McLeod, 1. R. Gilbert and Le Baro \mathbf{r} . Biggs, \mathbf{r} tii, structure ai K. Kustin and 1. G. Macara, *Comments Inorg. Chem., 2,* 1
	- K. Kustin and I. G. Macara, Comments Inorg. Chem., 2, 1 (1982). 0. Hansen, *Acta Pharmacol. Toxicol., 52,* supplem. 1,
- 0. nan
3 (1983) H.-U. Meisch and H.-J. Bielig, *Basic Res. Cardiol., 75,*
- *413* (1980). 413 (1900).
K. K. M. M. M. M. M. G. M. Macara, L. Macara, L. M
- A. L. Dingley, **R. Kustin, I. G. Macara, L. McLeod and** M. F. Roberts, Biochim. Biophys. Acta, 720, 384 (1982); M. V. Bell, B. J. S. Pierie, D. B. McPhail, B. A. Goodman, I. B. Falk-Petersen and J. R. Sargent, *J. Mar. Biol. Assoc. U.K.*, 62, 709 (1982). L. C. Cantley, Jr., and P. Aisen, *J. Biol.* Chem., 254, 1781
- (100) I. G. Macara, K. Kustin and L. C. Cantiey, Jr., *Biochim.*

Biophys. Acta, 629, 95 (1980).

- 8 L. Becker and H. U. Meisch, in 'Photosynthesis II., $\sum_{i=1}^{\infty}$ Principle Resonance $\sum_{i=1}^{\infty}$ in $\sum_{i=1}^{\infty}$ E , becker and H , U , meisch, in Friotosynthesis II. G. Akoyunoglou (Ed.), Balaban Int. Science Services, Philadelphia 1981, p. 123.
- 10 S. E. O'Donnell and M. T. Pope, *J. Chem. Sot. Dalton* \mathbb{R} . \mathbb{D} . Chasteen, in Bloidgical Magnetic Resonance L. Berliner and J. Reuben (Eds.), vol. 3, Plenum Press, New York 1981, p. 53.
- $\overline{1}$ **Trans.** *Trans. Property and* D. Rehder, Z. *Naturforsch., 32b, 77 1 (1977).*
- !! L. P. Kasanskii and V. I. Spitsvn. _ *Dokl. Phys.* Chem., .
- 12 L. P. Kasanskii and V. I. Spitsyn, *Dokl. Phys. Chem.*, 223, 721 (1975); E. Heath and 0. W. Howarth, *J. Chem. Sot. Dalton*
- $\overline{1}$ *Trans.,* 1105 (1981). D. Rehder, *Bull. Magn. Reson., 4, 33 (1982).*
- $\ddot{}$ D . Rehder, *Bull. Magn. Reson.*, 4, 33 (1962).
- $\frac{14}{15}$ w. Friedsch and D. Render, unpublished work.
- 16 R. J. Gillespie and U. R. K. Rao, *J. Chem. Sot. Chem.* ru. A. Busiaev, *v. D. Kopanev, A. A. Konovalova, S. v. (1978).*
- $\overline{1}$ *Commun., 422 (1983).* W. Commun., 422 (1963).
- \overline{a} *Communal R. A. independent*. *Commun.*, 342 (1979).
- 19 R. Choukroun and D. Gervais, *Inorg. Chim. Acta, 27, 163 (India), 32, 270 (1960).*
- 20 H, Funk, W. Weiss and M. Zeising, Z. *Anorg. Ahgem. (1978).*
- μ (*nem., 290, 30* (1936). \mathbf{r} . \mathbf{r} unk, w. weiss a
- \overline{a} A. A. Konovalova, S. V. Balnova, V. D. Kopanev and Yu A. Buslaev, Koord. Khim., 8, 1211 and 1364 (1982).
- $\overline{}$ μ . W. Buchier, in D. Dolphin (Ed.), 11 Academic Press, New York, 1978, p. 435.
- $(19/0)$. $(19/0)$ (1910).
محمد ب
- 25 U. Miiller, A. F. Shihada and K. Dehnicke, Z. *Natur-*Z. *Naturforsch., 35b, 522* (1980).
- *<i>formal formal. formal.* *****formal. formal.* *****formal. formal.* *****formal. formal. formal.* *****formal. formal. formal. formal.* *****formal. formal. formal. formal. formal.* ****